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ABSTRACT
In focusing on open pit mine scheduling, one of the biggest areas where a mining engineer can add value is in the 
area of cut-off grade optimisation. It is not atypical to add up to an extra 20% in value by bringing forward higher 
grade ore and deferring costs into the future.

There are many techniques available to maximise net present value when applied to open pit mine scheduling. 
That in itself raises the question of why so many of these techniques exist. The short answer is that none of these 
techniques are robust. Every time the problem changes, the algorithms also have to change.

Instead of trying to make a problem fit the constraints of an existing technique, there is much to be said for 
usefully hybridizing different approaches. This paper describes an innovative approach where evolutionary 
algorithms are combined with both local search and linear programming. The goal is maximising net present value 
(NPV) through optimisation of cut-off grade policy and extraction sequence for an open pit mine. The cut-off/cut-
over grade policy produced caters for multiple processing streams and stockpiles.

Finally we demonstrate the quality of the algorithm by comparing some results with a well-known mathematical 
solution.

INTRODUCTION
There exists a substantial arsenal of problem-solving techniques or algorithms that have been developed to 
address a variety of problems. Unfortunately as everyone knows, it’s almost always the case that the real world 
presents us with circumstances that are different to varying degrees than are required by these techniques. In 
the rush to present problem solving techniques people often tend to use an “off the shelf” classical problem 
solving technique. That often results in forcing a particular real world problem to fit the constraints of a particular 
technique. “Better solutions to real-world problems can often be obtained by usefully hybridizing different 
approaches” (Michalewicz and Fogel, 2004). Recognising the complexity of real-world problems is prerequisite to 
their effective solution.

People often blindly chase after the “optimal” without thinking about the implications thereof and what “optimal” 
actually implies. It should be remembered that every time a problem is solved in reality we only find a solution 
to a model of the problem. All models are a simplification of the real world, otherwise they would be as unwieldy 
and complicated as the real setting itself. The solution is only a solution in terms of the model and every model 
is associated with a set of assumptions and leaves something out. What this implies is that when it comes to 
solving complex real world problems with classical methods we mostly end up finding a precise solution to an 
approximate model (Michalewicz and Fogel, 2004). It should be clear that most real world problems do not yield 
to classical methods; if they did, they would not be problems anymore. Finally, it pays to remember that the very 
nature of optimality (in the face of multiple constraints) implies that the solution will often be brittle. More often 
than not it will reside at the border between feasible and infeasible. A slight variation from the optimal can result in 
a dramatic change in the objective or worse, lead to infeasibility as illustrated by figure 1. 
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Figure 1 – Brittle optimal.

In light of the above it seems prudent to not blindly cling to any particular approach or method, but rather to 
embrace all techniques when attempting to solve complex real world problems. Good examples of this can be 
found in articles (Lamghari and Dimitrakopoulos, 2012 and Myburgh and Deb, 2010) where metaheuristics were 
applied to the open pit mine production scheduling problem.

In solving the problem of maximising NPV by optimising cut-off grade and extraction sequence we have 
hybridized modern heuristics with classical optimisation techniques. The objective function here is neither 
continuous nor differentiable (Ataei and Osanloo, 2004) making it rather difficult to solve by most classical or 
gradient techniques in particular. To maximise a project’s NPV Lane (1988) showed that dynamic rather than 
constant breakeven cut-off grades should be used. Cut-off grade optimisation has long been recognised for 
its potential to improve a project’s value. Cut-off grade optimisation can be performed considering different 
objectives, but maximising net present value is the most applicable.

Lane developed an algorithm that maximises a project’s NPV by taking the time value of money into account 
under three constraints (mine, mill and market). The strategy was based on raising the cut-off grade above 
the breakeven cut-off grade. Lane showed that to maximise the NPV one has to include the fixed costs of not 
receiving future cash flows earlier due to the cut-off grade decisions that one takes today. These concepts are 
further explained elsewhere (Lane 1988, Rendu 2008, Dagdelen 1992, 1993, 1995 and Whittle and Wharton 1995).

Unfortunately Lane’s algorithm cannot be applied directly if one wants to optimise cut-off grade in the face of 
multiple processing streams, stockpiles or multi-element commodities (Dagdelen and Kawahata, 2007). Lane’s 
algorithm furthermore only optimises cut-off grades for a predetermined extraction sequence. If faced with any of 
the aforementioned complexities, Lane’s algorithm has to be extended (Asad 2002, 2005, 2007 and Gholamnejad 
2009). A hybridization of evolutionary and classical algorithms is used by Evorelution Strategy to overcome the 
limitations stated above. Evorelution was acquired by Maptek during 2014 to be marketed globally as part of their 
geological modelling and mine planning solution.

Evolutionary algorithms have come a long way since their inception in the 1960s. Their roots can be traced 
back all the way to Holland (1962, 1975). Although he did not develop his genetic algorithm (GA) framework for 
solving optimisation problems per se, one of his PhD students, Kenneth Dejong (1975), demonstrated through 
a simulation study that Holland’s GA can be used as a competitive optimisation algorithm to classical numerical 
unconstrained optimisation algorithms. However, Holland’s interest was to develop a nature-inspired methodology 
for creating self-adaptive systems. Interestingly, it is this self-adaptiveness of a GA that contributes greatly to its 
ability to successfully address complex real-world problems. Its agility allows it to be easily hybridized with other 
optimisation methods. Here the hybridized or memetic algorithm employs three levels of optimisation: A “master” 
evolutionary algorithm which manages two other “slave” or lower level optimisation algorithms. The master 
algorithm manages variation of cut-off grades as well as permutations of the extraction sequence. In addition, it 
manages a linear programming algorithm which is responsible for determining the optimal flow of material through 
multiple processing streams as well as management of the stockpile policy. Finally, every so often, a third local 
search technique is called upon to provide a push or boost to the best or fittest schedule so far.
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MODEL
The problem under discussion is the simultaneous optimisation of extraction sequence and cut-off grade for a 
single element in the face of multiple processing streams. Prerequisites for the development of a cut-off grade 
optimisation model include:

• Development of an ultimate pit limit or pushback or some portion inside the ultimate pit limit that can be 
mined, processed and refined in a number of years.

• Mining, processing and refining capacities.

• Operating costs and metal price.

• Proper stage design is optional but preferred. The impact of proper stage designs on cut-off grade 
optimisation cannot be stressed enough.

• The ore reserves inside the pit limit or pushback in terms of mineral grade and tonnage distribution. A 
grade tonnage distribution is calculated for each phase-bench combination.

The objective function of Strategy’s cut-off grade optimisation model is maximisation of NPV in the presence of 
capacity constraints (mine, mill and market and stockpile), multiple processing streams and extraction sequence. 
It can be represented mathematically as follows:
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ENGINE
The engine consists of an effective hybridization of two evolutionary and one classical optimisation algorithm 
(Figure 2). These include:

• The core or master evolutionary algorithm

• Local search evolutionary algorithm

• Linear programming algorithm

The main responsibilities for each algorithm include:

• Master

o  Exploring process cut-off grade search space.

o  Exploring stockpile cut-off grade search space.

o  Exploring extraction sequence search space.

o  Manage Local Search Evolutionary algorithm.

o  Manage Linear Programming Algorithm.

• Local Search

o  Exploring the immediate neighbourhood of process and stockpile cut-off space for a given extraction 
sequence, in other words the local search keeps the extraction sequence static.

• Linear Programming algorithm

o Optimises the flow of material through available processes.

o  Responsible for optimal reclaim strategy from stockpiles.

Figure 2 – Strategy engine.

A description of the main steps includes:

1. Creation of an initial population as follows:

a. For each individual solution a geometrically correct extraction sequence is produced using a 
combination of graph theory techniques, user supplied constraints, if any, and user supplied economic 
inputs.

b. A multi process cut-off grade profile is then generated for each individual. One can think of the profile 
as strings or threads through cut-off grade space (Figure 3).

c. Similarly a multi stockpile cut-off grade profile is generated for each individual.

d. Finally a stockpile availability profile is created for each individual.
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2. The fitness of each individual is calculated and the population is ranked based on fitness. The fitness 
here is NPV. During fitness calculations both the master and local search algorithms call on the linear 
programming algorithm to use the supplied cut-off grade threads, stockpile availability and extraction 
sequence to optimise the flow of material through the available processing streams. The linear 
programming algorithm is also responsible for determining the optimal reclaim strategy.

3. The master then iterates through successive generations by generating an offspring population where 
each child competes with the parents for the privilege to progress to the next generation.

4. Every so often, the master algorithm calls on the secondary local search algorithm to boost the best 
individual found so far. The local search does this by manipulating the threads through cut-off grade space 
whilst keeping the extraction sequence static. The improved individual is then sent back to the master 
where it replaces or upgrades its old self (analogue to exploring the local neighbourhood).

5. Steps 2 to 4 are repeated until no improvement in NPV is registered, in other words when the population 
loses diversity and converges on a single high quality NPV.

For an in depth discussion on how evolutionary algorithms work we refer the interested reader to Affenzeller et al 
(2009), Deb (2001), Deb and Agrawal (1995), Gen and Cheng (1997), Goldberg et al (1989, 1990), Deb and Deb 
(2012), Deb and Jain (2011) and Goldberg (1989). Here we will briefly elaborate on representation (chromosome) 
and operators responsible for exploration of the cut-off grade search space.
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EXPLORATION OF CUT-OFF GRADE SPACE
1. Representation

As mentioned one can think of a cut-off grade policy or profile as threads running through cut-off grade space. 
Figure 3 shows an example of what an individual in the initial population’s cut-off grade profile might look like 
(representing five different processing routes).

Figure 3 – Example of cut-off grade profile through cut-off grade space.

Stockpile cut-off grades are treated in a similar way. The availability of stockpiles is represented as binary vectors 
(Figure 4):

o  0 => stockpile not available

o  1 => stockpile is available

Figure 4 - Stockpile availability.

The extraction sequence is represented by a phase/bench time vector where the position in the vector represents 
the time when the phase/bench combination was mined. Each vector therefore represents a unique temporal path 
through the mine model under consideration (Figure 5).

Figure 5 - Time vector representing a temporal path through model.
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2. Strategy Genetic Operators

Crossover Operators

In evolutionary algorithms the crossover operator is usually the main tool used for exploring the search space 
(Goldberg, 1989). Generally speaking, a well-designed evolutionary algorithm functions as a building-block 
assembling machine and the intention is to combine those parts of the parent solutions that define them as high 
quality solutions. Ideally, exactly those parts or building blocks of the chromosomes of above average parents 
should be transferred to the next generation that makes these individuals above average. According to the 
building block theory one can expect an evolutionary or genetic algorithm in particular to systematically collect the 
essential pieces of genetic information which are initially spread over the chromosomes of the initial population 
(Affenzeller, Winkler, Wagner and Beham, 2009). Therefore a well-designed crossover operator should support the 
potential development of higher-order building blocks (longer allele sequences). To this end it is critical that the 
problem representation (chromosome) allows a crossover to fulfill this important requirement.

Here the purpose of the crossover operator is two-fold. In terms of cut-off grade threads it has to thoroughly 
search the random initial cut-off grade threads to create good threads. Thereafter good portions of these threads 
have to be combined to form better threads. Traditionally binary strings were used to discretise continuous search 
spaces (Yun, Lian, Lu, Chen, Guo, 2003, Ataei and Osanloo, 2004, Cetin and Dowd, 2001). However, the coding of 
real-valued variables in finite-length strings causes a number of difficulties such as (Deb and Agrawal, 1994):

o Inability to achieve arbitrary precision

o  Fixed mapping of problem variables

o Inherent Hamming cliff associated with binary coding

o  Processing of Holland’s schemata in continuous search space.

In light of the above, Strategy uses a heavily modified self-adaptive, variable-wise simulated binary crossover 
(SBX) (Deb and Jain, 2011) operator to recombine cut-off grade threads from multiple parents. The operator is 
parent centric (in contrast to mean centric) meaning that offspring are created around one of the participating 
parents. In addition it has the ergodic property such that any real value in the search space can be created from 
any two parent values, but with differing probabilities. Figure 6 shows the distribution of 10,000 offspring that 
was created around parents located at x=100 and x=300. A probability distribution is used to control the spread 
of offspring around the parents. From the figures it is clear that the probability of creating offspring points closer 
to the parents is larger than that of offspring far away from the parents. The distribution and hence the spread of 
offspring around parents is dynamically controlled and is varied over the life of the optimisation. 

Figure 6 - Parent centric SBX crossover
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To crossover the extraction sequences between two parents a different custom operator was developed. This 
operator combines extraction sequences from 2 parents in such a way that all geometric and user supplied stage 
release criteria is honored. In fact all of Strategy’s crossover operators are developed in such a way that they 
always produce feasible offspring. This is critical for two reasons:

• Although the application of a repair procedure afterwards to address infeasibility is common practice it has 
the consequence that alleles or values of genes of the resulting offspring are not present in the parents 
which directly contradicts the aforementioned building block aspect.

• It eliminates unnecessary computational time being spent on repairing infeasible solutions.

Mutation Operator

It is well known that the mutation operator is mostly used to maintain diversity in the population and is very 
important in evolutionary algorithms (Deb and Deb, 2012 and Goldberg, 1989). Arguably its most important 
role is to prevent premature convergence by randomly sampling new points in the search space. In contrast 
to a recombination operator, a mutation operator operates on only one member of the population at a time 
and modifies it independent to the rest of the population. Again, early researchers used binary coded genetic 
algorithms and subsequently mutation was usually implemented as a bit-wise operator attempting to mutate every 
bit with a probability pm = 1/L (where L is the total number of bits used to present all variables). It was realised that 
a major shortcoming of the aforementioned when it comes to real valued problems was the artificial discreteness 
associated with the coding mechanism as well as the bias of mutated solutions to certain parts of the search 
space (Deb and Deb, 2012).

In Strategy a heavily modified variable wise polynomial mutation operator is used. In this operator a statistical 
distribution is used to perturb a solution in a parent’s vicinity. To reduce computational complexity the Mutation 
Clock scheme is used to decide which variables are to be mutated (Goldberg, 1989). The spread of the mutated 
offspring around the parent is dynamically varied over the life of the optimisation. At the start there is a larger 
probability to create the offspring further from the parent than towards the end of the optimisation (Figure 7).

Figure 7 - Strategy polynomial mutation operator.
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Hybridized approach vs OptiPit®

To demonstrate the quality of the results that can be obtained by using Strategy we compared it to a well-known 
commercial optimisation package OptiPit®. In Dagdelen and Kawahata, 2007, they applied OptiPit® to a gold mine 
example (McLaughlin gold deposit, Northern California, USA) given as a case study in Dagdelen (1992). We will do 
the same here. As before, the example does not include any complexities related to phase and bench sequencing, 
but it does serve to highlight the search capability of Strategy in a complex real life operation with multiple 
processes.

Table 1 shows the grade tonnage distribution of the gold deposit case study and Table 2 the economic model and 
operational parameters.

Table 1 – Grade tonnage distribution of a gold case study after Dagdelen and Kawahata, 2007. 

Interval From 
(oz/ton) 

To  
(oz/ton)

MidPoint  
(oz/ton)

Ktons  
(oz/ton)

1  0 70 0.01  70000
2 0.02 7.257 0.023 7257
3 0.025 6.319 0.028  6319
4 0.03 5.591 0.033 5591
5 0.035 4.598 0.038 4598
6 0.04 4.277 0.043 4277
7  0.045 3.465 0.048 3465
8 0.05 2.428 0.053 2428
9 0.055 2.307 0.058 2307

10 0.06 1.747 0.063 1747
11 0.065 1.64 0.068 1640
12 0.07 1.485 0.073 1485
13 0.075 1.227 0.078 1227
14 0.08 1.799 0.085 1799
15 0.09 1.799 0.095 1799
16 0.1 0.371 0.105 371
17 0.11 0.371 0.115 371
18 0.12 0.371 0.125 371
19  0.13 0.371 0.135 371
20  0.14 0.371 0.145 371
21 0.15 0.371 0.155  371
22 0.16 0.371 0.165 371
23 0.17 0.371 0.175 371
24 0.18 0.371 0.185 371
25 0.19 0.371 0.195 371
26 0.2  5.864 0.279 5864

Table 2 - Economic and operational parameters (after Dagdelen and Kawahata, 2007).

Price 600 $/oz
Sales Cost 5 $/oz
Mining Cost  1.2 $/ton

Recovery 90 %
Processing Cost  19  $/ton

Fixed Cost 8.35  M
Mining Capacity Unlimited

Processing Capacity  1.05  M
Discount Rate 15  %

The following discussion will focus on highlighting the quality of the result that can be obtained by embracing 
modern heuristics and by creatively combining it with classical optimisation techniques. The quality of the result is 
shown by comparing it to results obtained by OptiPit® (Dagdelen and Kawahata, 2007).

We start by showing the operating cash flows and schedule obtained based on breakeven cut-off grades for a 
single Autoclave process (Table 3).
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Table 3 - Yearly ore and waste schedules using the breakeven cut-off grades (COG)  
(after Dagdelen and Kawahata, 2007).

Year Mining 
(Mtons)

COG 
(oz/ton)

Avg Grade 
(oz/ton)

Processing 
(Mtons)

Refining 
(koz)

Profits 
($M)

1 3.60 0.04 0.10 1.05 96.30 33.0
2 3.60 0.04 0.10 1.05 96.30 33.0
3 3.60 0.04 0.10 1.05 96.30 33.0
4 3.60 0.04 0.10 1.05 96.30 33.0
5 3.60 0.04 0.10 1.05 96.30 33.0
6 3.60 0.04 0.10 1.05 96.30 33.0
7 3.60 0.04 0.10 1.05 96.30 33.0
8 3.60 0.04 0.10 1.05 96.30 33.0
9 3.60 0.04 0.10 1.05 96.30 33.0

10 3.60 0.04 0.10 1.05 96.30 33.0
11 to 34 3.60 0.04 0.10 1.05 96.30 33.0

35 3.40 0.04 0.10 1.00 96.30 33.0
Total 125.80 36.70 3365.9 1154.2 

(NPV @ 15%) 
218.5 

Tables 4 and 5 shows yearly schedules for optimum cut-off grades for a single process by both OptiPit® (Dagdelen 
and Kawahata 2007) and Strategy respectively. Figure 8 shows a comparison between the two cut-off grade 
policies. The two schedules produced are virtually identical with a difference of 0.1% between NPVs. This is quite 
remarkable considering that the underlying methodologies and algorithms could not be more different. It illustrates 
the point that what we optimise is really only the model that is used to simplify reality, nothing more.

Table 4 - OptiPit® optimum cut-off grade (COG) schedule for single process.

Year Mining  
(Mtons)

COG  
(oz/ton)

Avg Grade  
(oz/ton)

Processing  
(Mtons)

Refining  
(koz)

Profits 
($M)

1 18.40 0.160 0.261 1.05 246.60 96.5
2 16.90 0.150 0.253 1.05 239.10 93.9
3 16.10 0.140 0.248 1.05 234.40 92.0
4 14.70 0.120 0.238 1.05 224.90 87.9
5 14.10 0.110 0.233 1.05 220.20 85.8
6 13.60 0.100 0.228 1.05 215.50 83.6
7 11.00 0.094 0.202 1.05 190.90 72.1
8 8.20 0.070 0.171 1.05 161.60 58.0
9 6.80 0.060 0.152 1.05 143.60 49.3
10 5.50 0.050 0.133 1.05 125.70 39.7

Total 125.80  10.50 2002.50 758.8 
(NPV @ 15%) 

414.4

Table 5 – Strategy optimum cut-off grade (COG) schedule for single process.

Year Mining 
(Mtons) 

COG  
(oz/ton)

Avg Grade  
(oz/ton)

Processing 
(Mtons) 

Refining 
(koz)

Profits 
($M)

1 17.55 0.156 0.257 1.05 242.7 95.0
2 16.66 0.145 0.251 1.05 237.6 93.1
3 16.03 0.137 0.247 1.05 233.7 91.5
4 15.11 0.123 0.240 1.05 227.2 88.8
5 14.37 0.111 0.234 1.05 221.6 86.3
6 14.06 0.105 0.232 1.05 219.0 85.1
7  10.83 0.086 0.200 1.05 189.0 71.2
8 8.55 0.072 0.174 1.05 164.7 59.4
9 6.87 0.061 0.153 1.05 144.6 49.5
10 5.49 0.050 0.134 1.05 126.2 40.2

Total 125.80 10.50 2006.22 760.1 
(NPV @ 15%) 

413.8
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Figure 8 – Comparison of optimum cut-off grade policy for OptiPit® and Strategy.

Let us take this one step further and optimise cut-off grades in the face of multiple processing streams and 
unlimited mining capacity. Figure 9 shows the additional processes and associated capacity constraints. Table 6 
shows the associated processing costs and recoveries.

Figure 9 – Diagram showing different material flow routes (after Dagdelen and Kawahata, 2007).

Table 6 – Processing costs and recoveries for different processes (after Dagdelen and Kawahata, 2007).

Table 7 shows the yearly schedules using breakeven cut-off grades for multiple processes. The interested reader 
is referred to Dagdelen and Kawahata, 2007 for details regarding the calculations to determine breakeven cut-off 
grades between different processes.
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Table 7 – Yearly schedules for multiple processes using breakeven cut-off grades (COG) (after Dagdelen and 
Kawahata, 2007).

Tables 8 and 9 show the yearly optimised schedules and optimum cut-off grades obtained by OptiPit® and 
Strategy respectively.

Table 8 – Yearly optimised schedules and optimum cut-off grades obtained by OptiPit® (COG) (Dagdelen and 
Kawahata, 2007).

Year Mining ROM Lch  CR Lch Flot to Autoclave Direct Autoclave Refining Profits

(Mtons) COG 
(oz/
ton) 

Avg 
grade 

(oz/ton)

Process- 
ing 

(Mtons)

COG 
(oz/
ton) 

 Avg 
grade 

(oz/ton)

Process- 
ing  

(Mtons)

COG 
(oz/
ton)

Avg 
grade  

(oz/ton)

Process- 
ing 

(Mtons)

COG 
(oz/
ton)

Avg 
grade 

(oz/ton)

Process- 
ing  

(Mtons)

($M)

1 33.91 0.02 0.036 10 0.062 0.078 2.35 0.099 0.209 2.00 0.20 0.279 0.65 511.9 215

2 25.25 0.02 0.033 6.17 0.049 0.062 2.35 0.08 0.162 2.00 0.20 0.279 0.65 428.7 179.4

3 19.3 0.02 0.029 3.54 0.039 0.05 2.35 0.066 0.125 2.00 0.20 0.279 0.65 365.3 151.1

4 4.96 0.02 0.025 1.62 0.03 0.041 2.55 0.057 0.094 1.75 0.20 0.279 0.7  313.5 128.2

5 13.46 0.02 0.023 0.95 0.026 0.037 2.43 0.05 0.084 1.91 0.19 0.274 0.67 294.7 118.8

6 10.57 0.02 0.029 2.02  0.04 0.066 2.00 0.15 0.254 0.65 250.4  97.4

7 8.05 0.02 0.027 1.23 0.035 0.054 1.60 0.09 0.208 0.73 202 76.5

Total 125.5 22.3 15.3 13.3 4.7 2366.5 966.4 
NPV @ 15% 

$625.2

Table 9 – Yearly optimised schedules and optimum cut-off grades (COG) obtained by Strategy.

Year Mining ROM Lch CR Lch Flot to Autoclave Direct Autoclave  Refining Profits

(Mtons) COG 
(oz/
ton) 

Avg 
grade  

(oz/ton)

Process- 
ing  

(Mtons)

COG  
(oz/
ton)

Avg 
grade 

(oz/ton) 

Process- 
ing  

(Mtons)

COG 
(oz/
ton) 

Avg 
grade  

(oz/ton)

Process- 
ing  

(Mtons)

COG 
(oz/
ton) 

Avg 
grade  

(oz/ton)

Process- 
ing  

(Mtons)

(koz) ($M)

1 29.8 0.02 0.035 8.15 0.057 0.071 2.35 0.091 0.188 2.00 0.199 0.279 0.65 473.90 199.0

2 26.5 0.02 0.034 6.69 0.051 0.065 2.37 0.084 0.170  1.97 0.199 0.279 0.66 441.62 185.2

3 20.1 0.02 0.030 3.86 0.041 0.052 2.38 0.069 0.131  1.96 0.200 0.279 0.66 374.77 155.7

4 14.0 0.02 0.024 1.18 0.028 0.038 2.38 0.052 0.088 1.97 0.197 0.277 0.66 302.96 122.6

5 13.9 0.02 0.024 1.12 0.028 0.038 2.38 0.051 0.087 1.97 0.198 0.278 0.66 301.24 121.8

6 11.5 0.02 0.021 0.07 0.021 0.032 2.47 0.045 0.072 1.85 0.158 0.258 0.68 265.74 105.0

7  9.8 0.02 0.020 0.01 0.020 0.020 1.84 0.040 0.063 1.77 0.117 0.238 0.70 231.57 91.8

Total 125.5 21.08 16.18 13.48 4.65 2391.8 981.1 
NPV @ 15% 

$625.9

Figure 10 shows the comparison between results from OptiPit® and Strategy. Once again, considering the widely 
different engines, it is quite remarkable how similar the results are. The NPV and resulting schedules are for all 
practical purposes the same (0.1% difference in NPV).
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Figure 10 - Comparison of cut-off grade policy between OptiPit® and Strategy.

Finally, let’s consider a more realistic scenario where mining is limited to 20Mt per year. Tables 10 and 11 show 
the yearly schedules and optimised cut-off grades for OptiPit® and Strategy respectively. Figure 11 shows the 
comparison between cut-off grade policies and as before, the results are virtually identical with less than 0.19% 
difference in NPV.

Table 10 - OptiPit® optimised schedules and optimum cut-off grades for smoothed tons (after Dagdelen and 
Kawahata, 2007).

Year Mining ROM Lch CR Lch Flot to Autoclave Direct Autoclave Refining Profits

(Mtons) COG  
(oz/
ton)

Avg 
grade  

(oz/ton)

Process- 
ing  

(Mtons)

COG 
(oz/
ton) 

Avg 
grade  

(oz/ton)

Process- 
ing  

(Mtons)

COG  
(oz/
ton)

Avg 
grade  

(oz/ton)

Process- 
ing  

(Mtons)

COG  
(oz/
ton)

Avg 
grade 

(oz/ton) 

Process- 
ing  

(Mtons)

(koz) ($M)

1 20 0.02 0.029 3.85 0.04 0.052 2.35 0.068 0.13 2.00 0.20 0.279 0.65 373.7 155

2 20 0.02 0.029  3.85 0.04 0.052 2.35 0.068 0.13 2.00 0.20 0.279 0.65 373.7 155

3 20 0.02 0.029 3.85 0.04 0.052 2.35 0.068 0.13 2.00 0.20 0.279 0.65 373.7 155

4 19.98 0.02 0.029  3.39 0.039 0.049 2.35 0.065 0.123 2.00 0.20 0.279 0.65 361.7 149.5

5 14.96 0.02 0.025 1.62 0.03 0.041 2.55  0.057 0.094 1.75 0.20 0.279 0.7 313.5 128.2

6 13.46 0.02 0.023 0.95 0.026 0.037 2.43 0.05 0.084 1.91 0.19 0.274 0.67 294.7 118.8

7 10.28 0.02 0.029 1.95 0.04 0.065 1.94 0.14 0.249 0.66 245.7 95.6

8  7.83 0.02 0.027 1.20 0.035 0.053 1.52 0.087 0.202 0.75 196.9 74.4

Total 125.5 17.5 17.53 15.1 5.4 2533.7 1031.5 
NPV @ 15% 

$614.5

Table 11 – Strategy optimised yearly schedules and optimum cut-off grades for smoothed tons.

Year Mining ROM Lch CR Lch Flot to Autoclave Direct Autoclave Refining Profits

(Mtons) COG 
(oz/
ton) 

Avg 
grade 

(oz/ton) 

Process- 
ing  

(Mtons) 

COG 
(oz/
ton) 

Avg 
grade 

(oz/ton) 

Process- 
ing  

(Mtons) 

COG 
(oz/
ton) 

Avg 
grade 

(oz/ton) 

Process- 
ing  

(Mtons) 

COG 
(oz/
ton) 

Avg 
grade 

(oz/ton) 

Process- 
ing  

(Mtons) 

 (koz) ($M)

1 20.0 0.02 0.030 3.84 0.041  0.052 2.35 0.069 0.130 1.99 0.20 0.279 0.65 373.97 155.2

2 19.9 0.02 0.030 3.79 0.041  0.052 2.40 0.069 0.130 1.94 0.20 0.279 0.66 372.79 154.8

3 19.9 0.02 0.030 3.79 0.041 0.052 2.36 0.068 0.130 1.99 0.20 0.279 0.65 373.15 154.9

4 17.4 0.02 0.028  2.67 0.036 0.046  2.36 0.061 0.113 1.98 0.20 0.279 0.65 344.45 141.8

5 14.4 0.02 0.025 1.37 0.029 0.040  2.41 0.054 0.091 1.92 0.20 0.278 0.67 308.33 125.3

6 13.1 0.02 0.023 0.77 0.026 0.037 2.55 0.052 0.082 1.76 0.18 0.267 0.70 288.56 116.4

7 11.4 0.02 0.020 0.02 0.021 0.032  2.51 0.045 0.072 1.80 0.15 0.254 0.69 263.66 104.1

8  9.4 0.020 0.028 1.51 0.037 0.060 1.99 0.13 0.242 0.64 230.00 88.5

Total 125.5  16.26 18.44 15.36 5.32 2554.90 1041.1  
NPV @ 15% 

$615.7
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Figure 11 – Comparison of cut-off grade policy between OptiPit® and Strategy.

CONCLUSIONS
We started out by stating that real world problems are complex and that they seldom, if ever, fit the constraints 
of existing classical optimisation techniques. We are not proponents of any given method, classical or otherwise. 
Rather we believe that one should not discard any potential technique or class of techniques out of hand, but 
instead find creative and innovative ways to apply or combine both classical and modern heuristics to tackle 
complex problems. With this paper we demonstrated that high quality results can be obtained by applying a 
fast approximate method. Although the time it takes to complete an optimisation varies with complexity of the 
operation, on average an optimisation takes anything from 3 to 20 minutes. Modern heuristic techniques are quite 
adaptable and one can easily extend or hybridize them with classical techniques. Evolutionary algorithms are 
stochastic iterative algorithms which cannot guarantee convergence, but as shown a well-designed algorithm can 
produce very high quality results quickly. Arguably one of their biggest advantages is that they are agile and easily 
adaptable (they are based on nature after all) to attack dynamic and complex real world problems. Their agility 
comes to the fore in that they are particularly well suited to embrace classical optimisation techniques in the quest 
to solve ever more complex problems.
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