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ABSTRACT
There is uncertainty in ultimate pit limits due to geologic variation and unpredictable economic landscapes. In 
this work we show how this uncertainty affects the ultimate pit and how it can be analyzed to improve the mine 
planning process. A stochastic framework using geostatistical simulation and parametric analysis is used to model 
the effects of geologic and economic variation on ultimate pit limits and overall project economics. This analysis 
is made possible by a new, highly efficient pit optimization implementation which can be automated and set up to 
calculate ultimate pits for hundreds of different scenarios in a matter of hours. Quantifying ultimate pit uncertainty 
early in the mine planning process allows mining engineers to make informed decisions regarding infrastructure 
placement, and to mitigate the possibility of incurring substantial costs relocating critical mine facilities.

INTRODUCTION
The mining industry is increasingly concerned with the effects of risk and uncertainty. Uncertain prices, 
unpredictable global markets, and unknown foreign exchange rates can alter the economic viability of a mining 
project in substantial ways. This economic uncertainty is compounded by geologic uncertainty. The extent and 
quality of any given deposit cannot be fully measured and is not known before consequential decisions must 
be made. These two sources of uncertainty are responsible for the majority of deviation between what happens 
during operation and what was initially planned. Understanding and explicitly quantifying this uncertainty will lead 
to better decision making and allow mining engineers and investors to be aware of what may occur.

It is unrealistic to believe that one model, estimated from sparse measurements, is enough to capture both 
geologic and economic uncertainty and allow for optimal decisions. The entire breadth of uncertainty should be 
considered, as both upside and downside risks have large impacts on the investment potential and operational 
efficiency of mining projects. The workflow presented here uses Monte Carlo simulation and parametric analysis 
together to explicitly analyze the breadth of geologic and economic uncertainty as it applies to ultimate pit 
calculation and long range mine planning.

In open pit mining, the ultimate pit represents the limit of extraction such that mining any more material would 
require the removal of so much waste as to make any extra ore irrelevant. The ultimate pit is used to assess the 
economic viability of the project and to guide the mine planning process. It is generally the first stage in overall 
site planning as other infrastructure will be placed to avoid intersecting the pit limits and sterilizing ore. The 
ultimate pit is based on geotechnical, geologic, and economic parameters. All of these parameters are uncertain 
due to sparse measurements, uncertain markets and other risks. These parameters have complex and non-linear 
effects on the ultimate pit, which motivates the use of Monte Carlo simulation.

In this paper, we propose a workflow for explicitly analyzing geologic, geotechnical, and economic uncertainty 
as it affects the ultimate pit in order to better understand the risks associated with any given mining project. The 
workflow allows for the creation of various figures and maps which summarize the risk and allow for risk-qualified 
decision making. Ultimate pit uncertainty is also translated into a probability model which is useful in both mine 
design and project evaluation. This workflow is made possible by an efficient optimal ultimate pit calculator 
which is able to analyze hundreds of different possibilities in a few hours instead of a few days or weeks. In the 
remaining sections we perform a brief review of the current literature, explain the workflow, and show a case 
study. We then discuss the results, compare them with conventional estimation-based techniques, and draw 
conclusions. 
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LITERATURE REVIEW
The ultimate pit represents the final pit contour such that all economic ore is extracted and all unnecessary waste 
is left in place. This problem has been expressed formally by Hochbaum and Chen (2000) as:

Where the block model of the deposit has been re-expressed as a directed graph G = (V,E) where each block 
is a node in V. Dependencies, dictated by geotechnical constraints, are expressed as edges in the set E. The 
economic block value b will then be used to determine the integer vector x which indicates if a given block is 
extracted or left in place.

Equations 1 to 3 have traditionally been solved using the Lerchs and Grossmann algorithm introduced in Lerchs 
and Grossmann (1965). However, in the same paper Lerchs and Grossmann indicate that the ultimate pit problem 
could be expressed as a flow problem. Picard (1976) provided the mathematical justification by proving that the 
selection problem is equivalent to computing the maximum valued closure of a directed graph. As a consequence, 
sophisticated network flow algorithms can be used in place of the Lerchs and Grossman algorithm and calculate 
identical results in a fraction of the time. The push-relabel algorithm of Goldberg (1988), and the pseudoflow 
algorithm of Hochbaum (2001) are two such sophisticated alternatives.

Hochbaum and Chen (2000) investigated the performance of the push-relabel algorithm and the Lerchs 
and Grossmann algorithm; their study showed that the push-relabel algorithm outperformed the Lerchs and 
Grossmann algorithm in nearly all cases. When the number of nodes is large, greater than several million, network 
flow algorithms perform orders of magnitude faster and compute precisely the same results.

Parametric Analysis
Parametric analysis, introduced in the same 1965 paper by Lerchs and Grossmann, is a technique to approximate 
an optimum mining sequence by calculating several nested pits. This is commonly called the nested Lerchs and 
Grossmann algorithm. The block values are decreased by some constant and Equations 1 to 3 are solved again. 
This reduction serves to constrain the volume of the pit and generate a smaller nested pit. When this process is 
repeated, several nested pits are generated which, when taken as a sequence, extract the highest valued blocks 
first. However, reducing the block values by a constant does not have an intuitive relationship with the inputs to 
the block value calculation and, therefore, an alternative reduction strategy is generally employed.

Matheron (1975) introduced a form of parametric analysis where the block value b is expressed in terms of a 
parameter l as in Equation 4.

where ci is the sum of the terms linearly dependent on l and di is the sum of the independent terms. In practice, d 
is taken to be the costs associated with extracting, processing, transporting, and selling the block, and c is taken 
to be any revenue. In this case l is called a revenue factor after Whittle (1989). The ultimate pit is calculated for 
many revenue factors l ≥ 0 to generate the nested pits.

Geostatistics and Simulation
Determining the values of the c and d terms in Equation 4 is both site and commodity specific and depends on 
many different parameters. Many of the parameters are local, in that they vary by location and depend on some 
geologic attribute such as metal content, rock type, specific gravity, etc. These geologic attributes must be known 
at every location within the volume of interest to inform the economic block value, however they cannot be directly 
measured at every location. Therefore, geologists and mining engineers have turned to the field of geostatistics 
to inform robust interpolation and extrapolation techniques to fill in the gaps. These techniques are based on 
the sound application of geology and statistics to generate fully sampled models which can then be used in 
downstream studies. The theory and modern practice of mining geostatistics is discussed in Rossi and Deutsch 
(2014).

Estimation based techniques such as inverse distance or kriging are only capable of providing one model 
which is smooth by construction and possibly systematically biased. Geologic uncertainty cannot be captured 
with a parameter and therefore a single geologic model is not enough. Instead geostatisticians have adopted 
a stochastic framework based on Monte Carlo simulation. Simulation techniques such as sequential Gaussian 
simulation, Isaaks (1990), or sequential indicator simulation, Alabert (1987), are free of conditional bias and 
provide many different equiprobable realizations which, when analyzed together, sample the underlying geologic 
uncertainty.

(1)

(2)
(3)

(4)

			   Maximize

			   subject to
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Uncertainty in Mine Planning
The results of geostatistical simulation have been used to great effect in mine planning before. Dimitrakopoulus 
(2002) analyzed the effect of geologic uncertainty on the ultimate pit of a disseminated, low-grade gold deposit 
and found that the realizations departed substantially from the kriged estimate. In Dimitrakopoulus (2007), the 
orebody uncertainty is used to determine designs that perform well in the presence of uncertainty. The authors 
indicate that designs based on stochastic mine planning have led to substantial increases in net present value as 
the entire range of uncertainty is analyzed.

In Monkhouse (2005), the authors advocate moving beyond naive optimization of a single model of the subsurface 
and instead urge practitioners to use all sources of uncertainty to make better plans and decisions. Plans that use 
uncertainty can be developed to achieve optimal results across a reasonable range of real world inputs. We offer a 
workflow to use that underlying uncertainty and a solution to compute the results quickly and efficiently.

Even with these previous studies there is more to be done to analyze uncertainty in the ultimate pit. One of 
the drawbacks to sensitivity studies and simulation in general, is the extra computation time and professional 
time required. We have developed a workflow which can be used to capture this uncertainty and summarize it 
effectively using fast, robust, and currently commercially available software.

WORKFLOW
Typical results from a long range mine planning exercise for a feasibility study (or during production) include a 
series of pit shells, a pit by pit graph, and a table of metrics for the chosen ultimate pit. Traditionally, these results 
are based off of a single estimated model and therefore have no consideration of geologic uncertainty. Stochastic 
methods will be used to add more information to these results and account for all sources of uncertainty. A 
conceptual depiction of such a change is shown in Figure 1. The pit shells will be replaced with many different 
possible pit shells. Uncertainty in the pit by pit graph will be depicted with error bars. The various metrics will 
be replaced with histograms showing the distribution. Additionally, a further compilation step is introduced to 
generate a probabilistic model of the pit shells.

Figure 1. The left side shows the results of standard estimation based long range mine planning; the right side shows how 
using simulation changes the results to account for uncertainty.

The workflow is shown in Figure 2. This entire workflow can be done manually; however as the number of 
realizations increases, this becomes practically infeasible. Simple scripts will be used to loop through the 
realizations and synthesize the results. There are three inputs to the ultimate pit uncertainty workflow: a 
geostatistical simulation model of the subsurface, distributions of the input economic parameters, and a 
distribution of the geotechnical parameters.
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Figure 2. Flowchart showing the proposed workflow for analyzing ultimate pit uncertainty. 

To achieve the improvements shown in Figure 1, a simulation model of the subsurface is required to generate 
equiprobable realizations of the underlying geology. The geostatistical simulation workflow to generate these 
results will not be discussed in this paper. However, practitioners of simulation should be mindful of recreating the 
input statistics (distributions, correlations, variograms, etc.) and ensuring the validity of the simulation as a whole. 
Issues of volume variance and support should be considered, however this may be avoided by simulating at the 
data scale before averaging to the relevant scale for mine planning.

To analyze uncertainty in the economic parameters, we introduce a stochastic economic block value function. 
At its core, the economic block value function is simply revenues less costs. A simplistic economic block value 
formula may have the following form:

Where l is the revenue factor, To is the tonnage of ore, g is the grade, r is the recovery or percentage of product 
recovered, P is the commodity price, PC is the processing cost, T is the total tonnage and MC is the mining cost. 
This is a very basic economic block value function and often more complicated functions are used in practice. 
Normally several different possible processes are defined. Selling costs and different mining costs are included. 
Multiple factors are applied based on rock type, location, or other parameters. Geometallurgical attributes, 
contaminants and other local inputs are also often included.

By using geostatistical simulation, we have accounted for uncertainty in the location dependent inputs to the 
economic block value calculation, such as grade, as they vary between geologic realizations. However, some 
of the global inputs such as commodity price are also variable and their values are uncertain. To account for 
uncertainty in these global parameters, we will define some distribution which captures the parameter in question 
and sample it once for each realization. This leads to a stochastic economic block value function that will have 
different global economic parameters by realization and therefore account for uncertainty. If production data or 
some other information is available, this may be done explicitly without resorting to assumptions regarding the 
character of the underlying distribution.

The geotechnical information describes the allowable pit slopes for every block and can take many forms. 
Commonly, slope requirements are defined by azimuth within different zones. Geotechnical uncertainty can be 
included by having different slope definitions for each realization or by basing the slopes on zones which have 
been simulated using some form of categorical simulation. Depending on the geotechnical context of the area in 
question, it may make sense to hold the slope definitions constant.

The remainder of the workflow is to draw from the input distributions, fully sampling the space of uncertainty, 
and then perform parametric analysis with that particular geologic model, economic block value function, and 
slope definition. The sampling and parametric analysis is then completed for many realizations. After a reasonable 
number of realizations, on the order of a few hundred, have been completed, the results are synthesized.

To aid in describing how to synthesize the results, we will use the following notation for the pits. Recall that 
each pit vector, calculated from equations 1 to 3, is an integer array with a 1 for each block that lies within the 
ultimate pit limits and 0 for any block outside. Denote a single pit vector xl,l where l is the realization index and l 
is the revenue factor. Let L and L represent the set of realizations and revenue factors respectively. One common 
summary is the pit number. The pit number is calculated as follows:

The pit number is set to 0 for air blocks, and to a large number for blocks which are outside the largest pit.

(5)

(6)
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The pit numbers correspond directly to the pit by pit graph. Ore and waste tonnages may be calculated simply, 
and with many, realizations error bars may be added. The error bars indicate the variability in both ore and waste 
for that particular revenue factor. Histograms of key indicators for any given revenue factor may be extracted and 
reported. The discounted cash curve and net present value depend on determining an extraction sequence which 
honors production and extraction constraints. Determining an extraction sequence is beyond the scope of this 
paper.

A further useful summary of ultimate pit uncertainty is the probability model. The probability model is similar to the 
hybrid pits of Whittle and Bozorgebrahimi (2004). It is defined:

The probability model indicates what the probability is for a given block to be extracted for a given revenue factor. 
For example, if it is assumed that the ultimate pit occurs at some revenue factor lU , PM (lU ) can form the basis 
for designing the ultimate pit and the probability models for l < lU can be used to assist in sequencing the mining 
process to extract high probability ore first. The intersection of PM (lU ) and the topography can also be plotted on 
a map which indicates the range of possible locations of the final pit crest.

CASE STUDY
A case study of a small copper deposit is carried out to test the workflow and analyze ultimate pit uncertainty 
with real data. The deposit is modeled using both estimation and simulation techniques. Parametric analysis is 
completed using stochastic economic block value functions and varying slopes. The results are then synthesized 
and ultimate pit uncertainty is assessed to inform mine valuation and mine planning.

Geologic Modeling

There are 43 drillholes with a combined length of 1450 meters in the area of interest. There are approximately 
400 assays measuring copper content and rock type. There are five rock types associated with the host rock, 
sedimentary layers, quartz, andesite and the high grade copper bearing dyke. This is an exploration dataset and 
the deposit is sparsely sampled so there is substantial geologic variation. This dataset is simplistic, with only one 
product; however the workflow is suitably general for more realistic cases.

An implicit model of the rock types using signed distance functions was generated to inform the extent and 
character of the domains. This model was conditioned to drillhole data and existing geologic interpretation. Within 
each domain, experimental variograms of copper grade were calculated and modeled. These variogram models 
were then used to generate a best estimate model using ordinary kriging.

The copper assays were then transformed to facilitate sequential Gaussian simulation. Normal score variograms 
were calculated and modeled, and then copper grade within the domains was simulated. Several of the 
realizations were checked visually and many more were assessed for variogram and histogram reproduction. Two 
of the simulated realizations are shown in Figure 3.

Figure 3. Two realizations of copper grade. Blocks are displayed semi-transparent and colored by copper content.

(7)
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Ultimate Pit Calculation

For the case study, the basic economic block value function defined in Equation 5 is used. Lacking production 
data and any other insight, the various global parameters are assumed to be normally distributed with the means 
and standard deviations given in Table 1. These assumptions are made without loss of generality; if more detailed 
information existed, it could easily be implemented into the scripted workflow.

Table 1. Global parameters varied in the case study.

Parameter Mean Standard Deviation

Mining Cost 2.0 $/t 0.2 $/t

Recovery 75 % 1 %

Price 2.2 $/lb 0.2 $/lb

Processing Cost 4.8 $/t 0.1 $/t

Overall Pit Slope 45 ° 1 °

Forty-six revenue factors uniformly distributed between 0.3 and 1.2 are used in the parametric analysis. These 
nested pits form the basis for the pit by pit graph and the sequence used to generate the discounted cash flows. 
A sequence is calculated using an assumed mining rate of 0.5 Mt per year and a bench lag of three benches.

A single realization consists of one geologic model generated using sequential Gaussian simulation, and a set 
of parameters sampled from Table 1. Five hundred realizations were calculated. The entire process required 
the calculation of 23,000 ultimate pits on a model with just over 1.7 million blocks. The ultimate pit uncertainty 
simulation, including the geologic simulation, finished overnight.

RESULTS AND DISCUSSION
The pit by pit graph and distributions of several key performance indicators are included in Figure 4. There is 
substantial variation in the tonnages and indicators across all revenue factors. The ore and waste tonnage bars 
indicate the mean value across all of the realizations and the error bars indicate the 10th and 90th percentile. 
The discounted cumulative cash flow is shown as three lines with the bold line indicating the mean and the two 
surrounding lines as the 10th and 90th percentile. The conventional estimation based results using the kriged model 
and average values for all other input parameters is shown as the dashed black line.

Figure 4. Results of the case study for ultimate pit uncertainty. Error bars and lines indicate the 10th and 90th percentile. The 
histograms are for revenue factor of 1.0. The dashed line shows the result from a conventional estimation based workflow. 
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The variation in the key performance indicators emphasizes the need to consider uncertainty in parametric 
analysis and ultimate pit calculation. Strategic decisions are based on the value and extent of the ultimate pit 
and if those values are demonstrably variable, those decisions should adapt. It is one thing for a mining engineer 
to decide on the fleet to purchase based on a single number, but if the distribution is known, the fleet can be 
purchased with the appropriate amount of flexibility in mind. Also, in this case study, the average kriging model 
with average economic parameters does not give an average assessment after the ultimate pit and long range 
planning analysis is completed. In this small case study, the expected discounted value across all realizations is 
11.3M$ with a standard deviation of 2M$, the kriged model indicated a value of 9.7M$. Deviation is expected, as 
the ultimate pit calculation is not linear with respect to the input parameters and average inputs do not guarantee 
average outputs; however, it is not guaranteed that the average assessment be lower than the average.

A probability model was extracted for revenue factor 1; the intersection of this model with the topography is 
shown in Figure 5. Every block is colored based on its likelihood to be within the pit. The red innermost blocks are 
in all 500 pits, the blue outside blocks are in none of the pits. The pit crest of the single model from kriging is also 
shown as a dashed black line. This model indicates where the crest could be, based on the underlying uncertainty. 
From a mine planning perspective, a continuum of results is much more valuable. In this case study the pit wall 
is much less variable along the east side, however there are a great many pits which extend towards the west. 
Infrastructure can now be placed appropriately accounting for where the pit may be in the future.

Figure 5. Intersection of the probability model for revenue factor = 1 with the surface. The ultimate pit crest for the estimated 
model is shown as the thick black line.

CONCLUSIONS
In this paper we have proposed a workflow to capture ultimate pit uncertainty using Monte Carlo simulation and 
an efficient ultimate pit solver. We have generated results which sample the entire space of uncertainty and allow 
for risk qualified decision making. Variability in the subsurface and all other input parameters is explicitly translated 
through the long range mine planning transfer function to analyze uncertainty in the ultimate pit.

A case study was completed on a small exploration dataset with 43 drillholes. Kriging and simulation was used 
to build geologic models. The geologic models were translated into economic block values using an average 
function for the kriged model, and a stochastic function for each realization sampling the underlying economic 
parameters. Parametric analysis was then completed using a range of revenue factors for all realizations. The 
results were then synthesized into figures and graphs which summarize the risk inherent in the mining project.

The results of the case study emphasize the need for explicitly analyzing uncertainty. The mean Monte Carlo 
result shows a larger pit which generates more revenue and requires more ore and waste to be mined than 
the conventional analysis based on the mean input parameters would suggest. This discrepancy may lead to 
suboptimal decisions and plans which do not consider the underlying uncertainty. 

Analyzing uncertainty at an early stage allows for plans to be developed which account for what could occur. The 
simulation based workflow presented here is completed using commercially available software with a reasonable 
amount of professional time expended. Uncertainties in geologic, economic, and geotechnical parameters can be 
quantified and analyzed which allows for flexible plans to be developed and appropriate risk qualified decisions to 
be made.
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