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ABSTRACT 
IGO Ltd’s (IGO’s) Nova-Bollinger Deposit (Nova-Bollinger) is a magmatic nickel-copper-cobalt (Ni-
Cu-Co) sulfide deposit found 160 km east-north-east of the town of Norseman in Western Australia 
(WA). The deposit is hosted by the Mesoproterozoic rocks of the Fraser Zone, which is part of the 
Albany Fraser Orogen (AFO). Since mining commenced in 2016, IGO’s Nova Operation (Nova) has 
mined and processed to 31 December 2020, 5.63 Mt of ore grading 2.04 per cent Ni, 0.86 per cent 
Cu and 0.07 per cent Co. 
Nova’s mine geology team (MGT) has used commercially available implicit modelling (IM) and 
general-purpose resource modelling (RM) industry software systems, to prepare the 31 December 
2020 (CY20) update of Nova-Bollinger’s JORC Code reportable Mineral Resource estimate (MRE). 
This CY20 MRE update was predominantly based on ~386 km of diamond core drilling, with the drill 
holes having a nominal grid spacing of 12.5 by 12.5 m throughout the mineralised zones of the 
deposit. Using IM tools, Nova’s MGT interpreted and modelled 22 separate domains from the drill 
hole logging, assaying results, and the MGT’s underground mapping. These IM closed volumes were 
then used to control the estimation of MRE variables into conventional industry digital block models 
using RM and other ancillary software systems. 
During 2021, a commercial machine learning (ML) software was trialled by Nova’s MGT for preparing 
block models of Nova-Bollinger’s MRE domains. The motivation for the trial was that the ML process 
could expedite modelling through the direct creation of a domain coded block model from the drill 
hole logging. Compared to the industry standard approaches of wireframing or IM, where the 
modeller usually makes many subjective choices to produce the domain model, ML offers a more 
objective ‘hands-off’ process for determining the connectivity of domains defined in drill holes. 
Additionally, the ML process provides a quantitative confidence metric associated with its output that 
may have utility in mine production and resource classification. 
In this paper, the results of the Nova-Bollinger ML modelling trial are compared to the MGT’s current 
workflow for MRE work. The MGT’s conclusions as to the advantages and disadvantages of the IM 
and ML methods for preparation of MRE domains are discussed. The ML software was also tested 
as a method of rapidly interpreting geology outside the principal zones of MRE interest. These testing 
results are also presented in this paper. 

INTRODUCTION 
IGO’s Nova is 160 km east-north-east of the town of Norseman in WA, and mines and processes 
Ni-Cu-Co sulfide ore from an underground mine developed on Nova-Bollinger (Figure 1). The deposit 
is hosted by the high-grade metamorphic rocks of the Fraser Zone of the AFO. A chonolith-like 
gabbroic intrusion is interpreted to the be the source of Nova-Bollinger’s magmatic sulfide 
mineralisation (Barnes et al, 2020). 
During 2021, Nova’s MGT trialled a new commercial ML software system that expedites domain 
block modelling by direct inference from coded drill hole data (Maptek – DomainMCF, 2021). 
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FIG 1 – Nova-Bollinger location and regional geology. 

To test whether an ML approach could produce a model like IM for the Nova-Bollinger’s CY20 MRE, 
the MGT provided the ML software with the same zone coded drill hole data that was used for the 
CY20 estimate. The resulting ML block model was then interrogated, and the advantages and 
disadvantages of both methods assessed. 
Compared to the industry standard approaches of wireframing or IM, where the modeller usually 
makes many subjective choices to produce the domain model, ML offers a more objective ‘hands-
off’ process (Sullivan et al, 2019). This paper details the results of the ML modelling trial at Nova and 
learnings of the MGT, along with ideas for future work. 

GEOLOGY 
Nova-Bollinger is in the southern part of the Mesoproterozoic Fraser Zone of the AFO. The Fraser 
Zone is fault bounded by the Biranup Zone to the north-east and the Nornalup Zone to the south-
east (Figure 1). The Arid Basin forms the basement to the Fraser Zone and the Snowys Dam 
Formation of the Arid Basin, is the basement package to the intrusion complex in the Nova-Bollinger 
area (Spaggiari et al, 2014). 
Mafic, ultramafic and granitic intrusions were emplaced in the region during the first phase of the 
AFO formation at ~1.30 Ga ago. Later, intense tectonic events from 1.14 Ga to 1.12 Ga ago, 
metamorphosed the Fraser Zone rocks to granulite facies. The Fraser Zone is now characterised by 
gneissic fabrics, complex refolding and major mylonitic zones. 
The Snowys Dam Formation rocks within the Nova-Bollinger region include pelitic to psammitic 
gneisses, a local carbonate unit, along with metamorphosed mafic-ultramafic and volcanoclastic 
rocks. Nova-Bollinger’s host mafic-ultramafic sill complex is a doubly plunging synform, with the 
deposit lying on the western side of the structure (Figure 2). 
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FIG 2 – Nova-Bollinger local regional geology. 

RESOURCE MODELLING PRACTICE 
Nova’s MGT prepared the Nova-Bollinger CY20 MRE using an ensemble of software systems. 
(Hetherington and Murphy, 2019). Like many companies in the industry, IGO has identified preferred 
software systems for different stages of the MRE process, rather than adopting a preferred system 
for all processes. 
Briefly, the drill hole data, once verified was exported from IGO’s centralised database and the 22 
domains of the deposit were modelled in 3D using a commercial IM oriented software system 
(Leapfrog Geo, 2021). The interpretation process involved preparing non-overlapping and nested 
3D closed volumes for each domain by applying radial basis functions to the interpreting geologist’s 
manual interpretation of the presence (or absence) of each domain in the drill hole paths. 
Where deemed necessary, manual control strings were digitised to augment the drill hole data 
domain coding, with some strings interpreted from underground mapping, other strings were 
prepared to control implicit modelling artefacts, and sometimes strings were prepared to enforce a 
geologist’s assessment of narrow zone connectivity. During this process it was common practice for 
the modelling geologists to modify the IM digital drill core logs of domains, after assessing the 
connectivity in the IM software and reassessment of core photographs and/or from litho-geochemical 
assay results. However, these changes were not back coded into central drill hole database. 
When finalised, the IM 3D closed volumes were ported into a general purpose RM software system 
(Studio RM, 2021), where the drill hole data was coded in the RM software according to the domains 
interpreted in the IM. The coded drill hole assay intervals from each domain were then exported as 
text files for ‘pre-composite statistical analysis’ and missing density multivariate regression 
imputation using customised statistical software scripts (R Project, 2021). The drill data was then 
imported back into the RM software and composited to uniform lengths along with calculation of 
estimation service variables. The composites were then exported to text files again for statistical 
analysis and parallel continuity modelling in a specialised geostatistical software (Supervisor, 2021). 
Over several years, the annual Nova-Bollinger MRE update has been used as an opportunity to train 
MGT’s senior geologists in the MRE process under the supervision of the site-based Competent 
Person and senior technical management. The full MRE estimation workflow summarised above 
involved several months of (part time) work for several senior geologists amongst their other daily 
mine work duties. 
As discussed above, a large proportion of the modelling time was spent in the process of the coding 
of the drill hole data into the 22 separate domains and associated iterative manipulation of the IM 
model results (Figure 3). The block estimation process also took several weeks (full time) to estimate 
and fully validate the model. Several more weeks of part time commitments were then required to 
prepare the detailed MRE modelling documentation. 
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FIG 3 – Nova-Bollinger CY20 MRE long section zone-coded composites looking north on 

6 479 700 mN (window ±10 m). 

Whilst Nova’s MGT has interpreted 22 domains for MRE estimation purposes, the samples outside 
the Waste Halo limit, were assigned to a single bounding outer background domain. This domain is 
assigned a default density and grade. As such, the CY20 MRE model is effectively a sulfide only 
model. No fully integrated attempt has yet been made to prepare a full geological model of deposit 
and its surrounds using the 99 unique lithological logging codes and the 11 codes recorded for 
different sulfide mineralisation styles. 

MACHINE LEARNING TRIALS 
With the increase in computing power in recent years, the application of ML algorithms to the 
challenges of mining industry resource and ore reserve estimation have progressed past the point 
of academic experimentation. Several algorithms have now been demonstrated to work in a practical 
manner on real-world problems (Dutta et al, 2010; Nezamolhosseini, Mojtahedzadeh and 
Gholamnejad, 2017; Sullivan et al, 2019; Kaplan and Topal, 2020). 
The ML application tested by Nova’s MGT in 2021, is a ‘black-box’ system that runs from a simple 
local interface, which ports the input data files to cloud servers, where the model is prepared by high 
performance computers. The commercial in confidence back end of the system is understood to be 
a deep learning neural network approach that uses the user supervised classification of the drill hole 
data to prepare a block model of the 3D connectivity of domains (Sullivan et al, 2019). 
The ML tool tested at Nova only requires three input files as follows: 

• A comma delimited text file containing the composite coordinates and domain coding. 
Optionally, sample assay data or other numeric assay-like fields can also be provided to 
augment the ML training process. While the domain coding needs to be present for all records, 
the accessory training data can contain incompletely populated variables. 

• A wireframe closed volume (or alternatively upper and lower surfaces), which are used to limit 
the spatial extents of the block model to be created using ML. 

• A block model definition that specifies parameters such as the block model origin, the total 3D 
spatial extents of the model space, and parent and sub block dimensions. 

Nova’s MGT ran three ML trials as follows: 

• Test 1: The ML software was provided with the drill hole composite files used to estimate Nova-
Bollinger’s CY20 MRE with the 22 domain codes (as per the legend of Figure 3), provided as 
the ML’s supervised categories. The purpose of this test was to determine the agreement (or 
not) of the ML model to the CY20 MRE’s IM zones. The density metal accumulation service 
variables of six chemical elements (Ni, Cu, Co, Fe, Mg and S) were also provided to assist 
with the training phase of the ML algorithm. 
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• Test 2: The ML software was provided with a drill hole file containing the domain coded 
composites used for the CY20 MRE, as per Test 1. However, this data was augmented with 
additional lithology coded data from the drill hole information from outside the estimation limits. 
Six chemical variables (Ni, Cu, Co, Fe, Mg and S) were also provided to assist with the training 
of the ML model. The MGT’s primary purpose of this test was to assess the utility of the ML-
prepared geological model outside the limits of the CY20 MRE. The auxiliary purpose was to 
assess whether the additional lithology coded samples resulted in any material changes in 
domain shapes and volumes compared to the Test 1 and IM model results. 

• Test 3: The ML software was provided with a drill hole file that contained only mineralisation 
codes and the grouped lithology used for Test 2. Specifically, this test did not use any of the 
domain codes used in Test 1. This test examined if a ‘hands off’ approach would produce a 
model comparable to a manually domain coded model and whether the resulting model had 
some utility in the MRE modelling process. 

TEST 1 – CY20 MRE SULFIDE MODEL 
The ML Test 1 model was prepared using the CY20 MRE’s parent block size of 6 m by 6 m in the 
horizontal plane, with blocks 2 m high. Sub-blocks were specified to be permitted down to one 
quarter of the parent block size, which is akin to the CY20 MRE model specifications. 
The ML process prepared a domain coded block model in its cloud process platform in 18 minutes 
and returned a block model of 2.4 million cells including sub blocks. The total workflow time to 
prepare the model was ~40 minutes, with this time including the time to set-up the input files in the 
correct format, the time taken to download the model, and the time to port the result into the RM 
software. 

Volume comparisons 
Figure 4a is a cross plot of 21 of the domain volumes from the Test 1 ML compared to the respective 
domain volumes from the CY20 IM modelling. The values plotted are in thousands of cubic metres. 
Note that the log10 horizontal axis is with respect to the ML estimated domain volumes and the log10 
vertical axis is with respect to the CY20 MRE domains. The large Waste Halo domain has been 
excluded from this analysis as the focus is on the target mineralised domains. Figure 4b is a bar plot 
of the percentage ratios returned when dividing the volume of the ML model by the CY20 MRE for 
the respective domains. 
These plots reveal that the comparative volumes of the two alternative MRE model preparation 
methods are generally similar for all but a few of the small domains. The most noticeable difference 
between the two modelling methods is the 7157 domain, where the ML approach created only 
8 per cent of the CY20 volume. However as discussed further below, the contribution of this domain 
to the total resource is very minor and the certainty in the CY20 IM interpretation is low. The more 
surprising result is the larger volumed 5201 domain, where the ML process returned 67 per cent of 
the CY20 volume. This is also discussed further below. 
In contrast, in many of the larger volumed domains, the ML approach returned larger volumes than 
the CY20 MRE model, especially the internal gabbros and the lower net domain. Overall, summing 
the volumes for all 21 estimation domains, the ML approach returned 104 per cent of the volume of 
the CY20 MRE. Figure 5 contains an example long section of the two models. These plots reveal 
some of the local differences between the modelling approaches, with the overall impression that 
the ML method is more conservative in terms of connectivity on the smaller volumed domains. 
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(a) 

 
(b) 

FIG 4 – CY20 versus ML volumes – Test 1. (a) Tonnage comparison; (b) Ratio comparison. 
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(a) 

 
(b) 

FIG 5 – Comparative IM and ML models on long section 6 479 700 mN (±10 m) looking north. 
(a) Model section prepared using implicit modelling for CY20 MRE; (b) Model section prepared 

using machine learning for Test 1. 

A closer on-screen inspection of the 7157 domain volume anomaly discussed above, revealed that 
the differences between the ML and IM methods appear to be a function of domain geometry. 
Importantly, most of the intercepts defining the 7157 breccia lode structure are very thin (Figure 6a). 
For the CY20 MRE, where the modeller connected the 7157 domain intercepts using IM tools, the 
subsequent block fill was largely discontinuous, even when specifying sub blocks down to a 
resolution of 1 mE × 1 mN × 0.5 mElev (Figure 6b). In contrast, using the ML approach, the only 
zone where connectivity occurred for the 7157 domain was for a small pod around a cluster of thicker 
intercepts (Figure 6c). 
The finding here is that, as expected, the ML approach is more conservative in domains where the 
data support is thin and the interpretation more tenuous. Part of the issue here is that at Nova-
Bollinger, experience has encouraged modellers to attempt to constrain any narrow high-grade 
intercepts within broader low-grade domains. This is to help prevent interpolation ‘smearing’ of higher 
isolated grades into broader low-grade domains. As such modellers must make subjective decisions 
between ‘lumping’ data together or ‘clumping’ out higher grades. The 7157 domain is a case in point 
(as is 8101 domain), where the domain was prepared to isolate high-grades, but then it was assigned 
an Inferred Resource JORC Code confidence due to the understood uncertainty of the interpretation. 
However, this approach is problematic when Inferred Resource pods end up within domains of 
Measured and Indicated Resources, which are then used for ore reserve conversion. For the 7151 
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domain the ML result appears to make more sense in this situation and perhaps grade cutting or 
distance constraining the interpolation (or both) of thin isolated high-grades makes more sense. 

 
(a) 

 
(b) 

 
(c) 

FIG 6 – 7157 domain IM wireframe and block fills – CY20 and ML Test 1. (a) CY20 MRE IM 
wireframe; (b) Block fill of IM wireframe; (c) Intercepts and MLA blocks. 

The other estimation domain with a significant volume difference between the CY20 MRE and ML 
models is the 5201 Footwall Stringer domain (Figure 7a). The 5201 domain has much more drilling 
and intercepts are generally thicker than in the 7157 domain. However, the ML output appeared to 
be somewhat erratic with connectivity occurring between wider spaced intercepts in some areas but 
no connectivity occurring in areas of closed spaced drilling intercepts (Figure 7c). However, again 
the 5201 domain represents only a small portion of the resource, and the ML modelling of the larger 
domains was generally consistent with the IM results. 
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(a) 

 
(b) 

 
(c) 

FIG 7 – 5201 domain IM wireframe and block fills – CY20 and ML Test 1. (a) CY20 MRE IM 
wireframe; (b) Block fill of IM wireframe; (c) Intercepts and MLA blocks. 

Data classification comparison 
Conventional practice when dealing with ‘hard-boundary’ estimation domains, is to only use 
composites within an estimation domain to estimate the variable of interest within that domain. This 
was the approach applied in the Nova-Bollinger CY20 MRE. As the ML approach had defined 
different spatial volumes for the domains, a new ML-domain class field was added to the composite 
file to reflect the different ML volumes. A parallel ML domain field was coded into the drill hole file for 
each composite according to the location of the composite’s centre relative to the block defined 
domain boundaries of the ML block model. The purpose of this exercise was to prepare a proxy 
confusion matrix for the ML results (Fawcett, 2006). 
Figure 8a is a cross plot comparing the number of composites in each domain in the CY20 MRE and 
the ML recoded field. The horizontal axis is with respect to the CY20 MRE composite file and the 
vertical axis is with respect to the ML recoded file. Figure 8b is a bar plot of the ratio of the ML to 
CY20 MRE composites for each domain subtracted from unity, which serves as a ‘reclassification 
index’. For this metric a positive value represents the proportion of composites reclassified to a 
different domain from what was originally in the CY20 MRE domain coding, and conversely, a 
negative value indicates the proportion of composites from a CY20 MRE domain moved to a recoded 
ML domain. 
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(a) 

 
(b) 

FIG 8 – ML/CY20 MRE composite reclassification. (a) Composite count comparison; 
(b) Reclassification of composites. 

As expected from the volume comparison results discussed above, the numbers of composites 
reclassified is greatest for the small volumed domains such as 7157, 8101, and 8201. However, for 
the larger volumed estimation domains the reclassification of composites was relatively fewer by 
proportion, despite the sometimes larger volumes returned in the ML model for these domains. The 
hypothesised explanation here is that the margins of these larger zones often have wider spaced 
drilling and are spatially more distant to other domains, so a small change in the boundary position 
may have only a minor effect in terms of reclassification of surrounding composites. 
Of interest is the moderately high reclassification index of the composites from several breccia 
domains, with values ranging from 7 per cent to 17 per cent in Figure 8b. If these higher grades end 
up in adjacent zones that are low-grade, these values will invoke problems of grade ‘smearing’ in 
the model, which may not be appropriate. As such, further testing is needed to assess the grade 
interpolation outcome of using the ML domained model and recoded composites. This is part of an 
ongoing study, and results should be available by the time this paper is published. 
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Estimation confidence 
The ML application prepares a standard confidence metric, which is in the range zero to 100, for 
each block in the model. Figure 9 is a long section through the Nova-Bollinger Test 1 ML model 
where the model’s blocks have been colour-coded according to the ML confidence inset legend and 
the drill holes are coded according to the domain legend. The section northing is the same as that 
used for Figure 5. 

 
FIG 9 – Machine learning confidence metric on long section 6 479 700 mN (±10 m) looking north – 

Test 1. 

The pattern generated by the ML’s confidence metric on the long section included in Figure 5 
appears to be similar to the boundary uncertainty quantification, which can be prepared through 
stochastic simulation or jack-knife estimation of a signed distance function for the boundaries of the 
modelled estimation zones (Amarante, Rolo and Costa, 2019). 
The estimation confidence appears to decrease symmetrically towards a given boundary, and where 
the local geological complexity is high the overall confidence is lower. For example, the Nova Upper 
area, and the lower parts of Nova and Bollinger in Figure 9a, where there are multiple relatively thin 
domains have lower confidence in the boundary locations. Anecdotally, the Nova’s MGT have found 
that these types of mining areas are more likely to be correlated with poor short-term reconciliation. 
This metric may assist in targeting additional drilling to increase the confidence of these domains. 
Interestingly, there is a moderate log-log correlation between the volume of a domain and the ML 
confidence (Figure 10). This trend is consistent with the observation that domains with higher surface 
area to volume ratios have lower overall ML confidence as the uncertainty is often higher when 
approaching the interpreted boundary. The ranges and mean ML confidence values for each domain 
are depicted in the violin plots of Figure 11. 
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FIG 10 – ML volume versus confidence – Test 1. 

 
FIG 11 – ML confidence by zone – Test 1. 

The shapes of the distributions in Figure 11, highlight the risker domains such as 7157, but also 
reveal the more interesting result that many of the thin breccia domains such as domains 7152 to 
7156, have a large proportion of blocks with low ML confidence values. Nova’s MGT plan to 
investigate this metric in relation to mine reconciliation results to determine its utility in forecasting 
reconciliation issues that are currently thought to reflect local domain complexity. 

Locally varying angle field 
Nova’s MGT prepared a locally varying angle (LVA) vector field to facilitate the CY20 MRE estimation 
of block grades and density using a dynamic anisotropy (DA) sample search methodology. DA 
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requires that every block in the model have a defined plunge vector (dip and dip direction) of the 
major axis of the sample search ellipsoid (Machuca-Mory, Rees and Leuangthong, 2015). 
The ML process also prepares a LVA field, which potentially could be used to replace the time 
consuming and somewhat subjective methods used to prepare the LVA field in kriging estimation. 
Figure 12a contains images of the LVA dip variable as interpolated from estimation wireframe 
boundary surfaces for the CY20 MRE, and Figure 12b is the LVA dip variable from the ML model. 
The dip fields for the ML and DA methods are quite different. The DA dip field is generally less steep 
in the range 10° to 30°, compared to the ML equivalent blocks. Figure 12b demonstrates that the ML 
dip field tends to have broad areas of very steep dip (>70°), which seems counter to the MGT’s 
understanding of the geological and grade continuity in many areas of the deposit. Nova’s MGT plan 
to run an estimate using the ML LVA field, but initial impressions are that the field is unlikely to be a 
substitute for the standard DA approach. Certainly, a better understanding of how and why the ML 
LVA field is created would be helpful prior to additional testing work. 

 
(a) 

 
(b) 

FIG 12 – LVA field dip on long section 6 479 700 mN (±10 m) looking north – Test 1. (a) CY20 
MRE true dip; (b) ML plunge angle. 

TEST 2 – SULFIDE AND FULL GEOLOGY MODEL 
For the CY20 MRE, Nova’s MGT restricted its modelling to sulfide domains within the bounds of the 
all-encompassing but spatially constrained ‘Waste Halo’ domain. The purpose of the Waste Halo 
was to prepare a waste dilution model with robust grade and density estimates, which would be 
required in the ore reserve estimation process. The model space outside of the Waste Halo was 
assigned to the background model. 
Nova’s MGT prepared the ‘Test 2’ model to assess how well the ML application might model the 
geology of the model space outside the 21 sulfide domains. Additionally, Test 2 facilitated the 
assessment of whether having additional information outside the sulfide domains might have any 
material difference to the Test 1 ML model results. 
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To prepare the Test 2 ML model, Nova’s MGT first grouped the 120 alphanumeric codes into a more 
tractable 25 categories using the team’s current understanding of the geology outside mineralisation. 
An example of this was to combine several of the internal hanging wall sedimentary logging codes 
that represent different mineral proportions within the same unit. For example, the unit SQQ (quartz 
dominated) and SQG (quartz and garnet dominated) were combined into a single ‘HW Sediments’ 
domain. Another example included combining the 15 different logging codes for felsic intrusive into 
a single ‘Granite’ domain code. These 25 categories were then combined with the sulfide model’s 
codes and the ML model was prepared from 51 separate geology and domain codes. The ML model 
was also provided with the grades of six chemical variables (Ni, Cu, Co, Mg, Fe and S) to augment 
the ML training. The Test 2 ML model specifications in terms of model extents, dimensions of parent 
and subblocks, were set to be the same as used in Test 1. The total workflow time to prepare the 
model was ~1.5 hours. 

Volume comparisons 
Figure 13a is a cross plot of the volumes of the Nova-Bollinger CY20 MRE domains compared to 
the Test 2 ML model – akin to the analysis above prepared for Test 1 in Figure 8. Figure 13b is a 
bar plot of the percentage ratios returned when dividing the volume of the ML model and grouped 
geology model by the CY20 MRE for the respective domains. 

 
(a) 

 
(b) 

FIG 13 – CY20 versus ML volumes – Test 2. (a) Volume comparison; (b) Ratio comparison. 
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The bar plot that is Figure 15, where each bar represents the percentage ratio of the respective 
domain volumes in Test 2 compared to Test 1, reveals that including the geology coding in the ML 
training, increases the volume assigned to the smaller volumed destination zones, such as the 7157 
zone (Figure 14). While the change in approach did not fill the volume as much as the IM approach 
as depicted previously in Figure 6c, there were significantly more blocks allocated to the 7157 zone 
in Test 2. Additionally, the Test 2 model had smaller volumes created in Bollinger Net domain (6151) 
and the Bollinger C5 domain (7260) when compared to Test 1. 
The addition of the grouped geology in Test 2 had a direct influence upon the ML software’s ability 
to further define the 7157 and 5201 domains compared to the Test 1 model. Figure 14 shows the 
increased volume of 7157 produced with addition of the grouped geology and Figure 16 shows the 
increased volume of the 5201 domain compared to depicted previously in Figure 7c. 

 
FIG 14 – 7157 domain block fills – Test 2. 

 
FIG 15 – ML Test 2/Test 1 percentage ratio. 

 
FIG 16 – 5201 domain block fills – Test 2. 
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Due to the black box nature of the ML software, understanding the drivers that increase the narrow 
lode volumes in Test 2, compared to the Test 1 results, is difficult. The reason may be that the 
additional samples surrounding these composited domains increase confidence in larger volumetric 
estimations, whilst constraining the thicker volumed domains. Nova’s MGT plan to investigate this 
effect with further experimentation. 

Test 2 – model cross-section 
Figure 17, which is a cross-section through the Test 2 ML model, has a strong similarity in geometry 
and connectivity of the sulfide domains when compared to both the CY20 MRE and Test 1 models 
(as previously depicted in Figure 5). There is, however, significantly higher geological complexity 
modelled in the waste domains, both inside the Waste Halo limit (Figure 17), and outside this limit of 
the CY20 MRE model (Figure 18). 

 
FIG 17 – Test 2 long section 6 479 700 mN (±10 m) looking north – domains only. 

 
FIG 18 – Test 2 long section 6 479 700 mN (±10 m) looking north – lithology only. 

When compared to a Nova-Bollinger geological interpretation prepared by one of IGO’s geochemical 
experts as depicted in Figure 19, the Test 2 model has modelled sedimentary domains in the area 
to the east of C5 as opposed to gabbro domain being interpreted in the manually interpreted 
geological model. Test 2 modelled sediments in this area display complex folding structures, and 
this is supported by underground mapping observations in the area. 
The Test 2 model has increased lithological complexity in the intrusive complex in the hanging wall 
of the deposit when compared to the geological model. This is due to the intended scale of definition 
the geological model was produced at (50–120 m intervals) and having used drilling with full 
geochemical data only. 



International Mining Geology Conference 2022 | Brisbane, Australia and Online | 22–23 March 2022 165 

The fault zone domain modelled in Test 2 is often discontinuous and dipping in the direction of the 
surrounding geology. This result disagrees with the orientations of known faults, where the faults are 
observed to be cross-cutting structures in face mapping. Spatially, Test 2 did however, model fault 
zones in similar areas to the known structures. Further investigation is required to determine how 
structural data could be correctly modelled using ML or if a different approach is necessary. 

 
FIG 19 – Nova Bollinger CY20 MRE hinged cross-section 6 479 710 mN looking north (manual 

geological interpretation Ben Cave). 

TEST 3 – MINERALISATION ONLY CODING 
For ML Test 3, Nova’s MGT provided the program with a (pre-domaining) major lithology component 
and assay result drill hole file. The major component lithology was designated the supervised domain 
variable. The goal of this test was to determine if a ‘hands off’ approach would produce a model that 
could be used for early-stage development or estimation prior to undertaking a mineralisation domain 
rationalisation similar to that applied for the CY20 MRE. 
The mineralisation codes logged in the Nova-Bollinger drill hole database are shorthand 
alphanumeric abbreviations. For example, ‘$X’ is used for net textured mineralisation and ‘$S’ for 
stringer. In these cases, the codes were recast as ‘net texture’ and ‘stringer’ respectively for the 
purposes of the test. Many similar adjustments were made for other shorthand mineralisation codes. 
All other non-mineralisation lithology codes were grouped into the same 34 grouped geological 
codes using the same assumptions as applied in Test 2. The workflow time to prepare this model 
was ~1.5 hours. 
As expected, removing the CY20 MRE domain coding to train the ML model, resulted in more 
complex relationships between the ML interpreted domains. For example, Figure 20 is a bar plot of 
the proportions of Test 3’s ML domains inside the wireframe of the CY20 MRE 7151 Lower Breccia 
domain. This plot confirms that within this CY20 MRE domain, there are near equal proportions of 
breccia, massive and stringer mineralisation that have been grouped into breccia style, reflecting the 
variability of logged lithologies with corresponding grades that have been ‘lumped’ into the unit. 
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FIG 20 – Test 3 proportions of the Lower Breccia. 

Test 3 – model cross-section 
Figure 21 is a cross-section through the Test 3 ML model showing mineralisation and geology. Like 
Test 2, there is again, an increase in the complexity in the waste domains outside of the CY20 MRE 
Waste Halo limit compared to the Test 2 model shown in Figure 17. The mineralisation domains are 
also significantly more complex compared to Test 2, with some of the Test 3’s mineralisation 
occurring outside the CY20 MRE Waste Halo limit. 

 
FIG 21 – Test 3 long section 6 479 700 mN (±10 m) looking north. 

Compared to the Test 2 model, the Test 3 model typically has larger volumes of stringer 
mineralisation interpreted to occur in place of breccia domains. For example, this effect occurs for 
the Lower Breccia and Upper Breccia domain, which contain most of the nickel metal in the Nova 
Bollinger. This effect likely indicates a tendency for geologists to model stringer material into the 
primary breccia domains when highly mineralised or when stringer xenoliths occur near, or internal 
to, the breccia boundary. 
The Test 3 domains also contain less breccia mineralisation compared to Test 2 in the hanging wall 
of Nova. Where breccia is modelled in Test 2 in the hanging wall, this is often interpreted to be 
gabbroic and net textured mineralisation in the Test 3 model. The net textured mineralisation in 
Test 3 is also more steeply dipping compared to the Test 2 model. This may be a function of the high 
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dip angles present in the ML model’s LVA field but could equally be a valid connectivity effect. More 
investigation is needed. 
The Test 3 model also contains significant amounts of disseminated and blebby mineralisation that 
is not present in the Test 2 model, particularly in the hanging wall of Bollinger. The gabbroic 
mineralisation frequently contains disseminated very low-grade sulfides in the location where this 
extra mineralisation is defined in the Test 3 model. This effect is likely explained by subeconomic 
mineralisation not being modelled separately to the Leucogabbro in the CY20 MRE. 

LEARNINGS FROM NOVA 
The ML software trial has provided Nova’s MGT with an opportunity to test several different 
hypotheses on how to model the geology and mineralisation of Nova-Bollinger. The trial has also 
provided an opportunity to understand if ML techniques can be applied to enhance the current MRE 
workflow. 

Drill hole file 
Moving to ML software from using manual or IM software for domaining, highlights the criticality of 
having a robust method of drill hole logging. Nova is a relatively young operation, with only one 
change of ownership since its discovery in 2012 (Bennett et al, 2014). However, the logging 
methodology and lithology coding has changed several times, which has resulted in 99 different 
lithologies being interpreted to occur within the CY20 MRE drill hole file. Unfortunately, multiple 
codes are often used for the same lithology and inaccuracies also often occur in the logged lithology. 
These issues highlight the problems of inadequate training, and mentoring junior staff tasked with 
logging drill core. As such, a robust quality control stage is needed to review the logging before MRE 
work can commence. 
The MGT’s use of IM modelling tools has allowed logging errors within the input drill hole files to be 
noticed and corrected during MRE preparatory work. However, this approach is time-consuming and 
rarely are the changes updated in the primary drill hole database due to the time-pressure to 
complete the estimate and subsequent MRE documentation. 
Increases in the speed of modelling in ML compared to the current MRE workflow, could provide 
additional time for the senior and resource geologists to mentor junior staff and better review drill 
core logging activities. ML results, however, provide a different opportunity to pick up on logging 
anomalies by using cross-section checks compared to 3D checks in IM modelling. 

Modelling 
ML challenges the traditional methodology of modelling mineral deposits. As demonstrated in the 
example of Test 1, continuous domains modelled using IM sometime do not maintain the same 
connectivity in an ML model. However, the addition of the geology ‘samples’ to the domain 
composites in Test 2 showed that providing additional information to the ML produced greater 
connectivity in thinner domains. While the reasons for this improvement are not yet fully understood, 
the important observation is that a better model was returned by not truncating the information for 
the ML approach. 
The Test 3 example using mineralisation codes showed that without the influence of geologist-
modelled domains, the ML software could create a comprehensive spatial model of all mineralisation 
styles and geologies. The utility of this type of model needs more assessment and testing, 
particularly when considering subsequent grade and density estimation. 
Test 3 also highlighted that the CY20 MRE breccia domains often contain many different types of 
mineralisation logged within a MRE grouped domain. Intuitively, this variability is due to the mixed 
nature of brecciated orebodies where a drill hole can pass through several xenoliths exhibiting 
different lithologies located within the same mineralised envelope. 

Estimation 
In an iron ore deposit, the ML software has been tuned to estimate block grades for multiple 
variables, in conjunction with the geological domaining, with grade estimation and geological 
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domains both determined by an ML algorithm (Sullivan et al, 2019). Given the early-stage of 
development of the ML software at the time of the trial, calibration to estimate metal grade for a Ni-
Cu-Co deposit such as Nova had not been completed. However, the MGT tested an internal process 
to use the domain coded Test 2 ML model blocks and apply the standard ordinary kriging CY20 MRE 
estimation process. The results of this first pass estimation were highly comparable to the CY20 
MRE. 
Hopefully, future development of the ML software will involve the calibration of the grade estimation 
algorithms for Ni-Cu-Co deposits and thereby remove the need for the current estimation stage. 
However, the authors of this paper consider that developing a clearer understanding of how these 
ML estimates are generated will be required before these estimations can be routinely accepted and 
adopted by the industry. 

Future work 
One of the key areas of investigation for future work is to understand how the ML software can be 
improved to model thin domains. The results of Test 1 raised the question whether Nova’s MGT 
were overly optimistic with the connectivity of thin domains. The results from Test 2 showed that 
connectivity improved with additional drill hole information. Further work to determine how to optimise 
how the ML software models thin domains is required so that meaningful comparisons can be made 
between manual and ML interpretations. 
Given the large number of lithology codes within the CY20 MRE drill hole file, grouping of lithology 
codes in Tests 2 and 3 was completed out of necessity to help produce a reasonable result. Future 
work will investigate if data conditioning can be improved and expanded to include the use of spatial 
or geochemical data contained within the drill hole file. This may lead to defining different groupings 
or domains for testing using pre-process ML analysis or rules based domaining, without the need for 
3D modelling work. 
The LVA angles contained within the ML models were significantly different to the DA LVA field 
prepared for the CY20 MRE. Future work will investigate how this effects the resultant grade models. 

Advantages and disadvantages 
What follows is a list of what Nova’s MGT interpreted to be the current advantages of ML over IM 
modelling: 

• The ML pay-by-use business model may be more cost-effective than maintaining IM software 
systems. 

• The simple ML inputs can be readily prepared in most commercial general RM software 
systems. 

• The ML modelling times are relatively short, albeit the update times are longer than updating 
a model for a few new holes in IM systems because the ML entire model needs to be re-run 
when new data is appended. 

• The ML model returns an objective measure of uncertainty in the geological model, which is 
likely to have some utility in mineral resource classification and mining reconciliation work. 

• Multiple different geological models can be prepared in parallel to assess the JORC Code 
Table 1 item (Section 3) as ‘The effect, if any, of alternative interpretations on Mineral 
Resource estimation’(Joint Ore Reserves Committee, 2012). 

The MGT’s assessment as to the current IM advantages over ML modelling are as follows: 

• The ML black-box technology can only be judged on the utility of its results. Currently there 
appears to be limited user scope to tune the ML’s control parameters to a geologist’s expert 
understanding. In contrast the theory and practice of IM modelling is well documented in the 
scientific literature and the mature technology is now appearing in most general purpose RM 
software systems. 
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• The IM method is currently better able to model thin domains with complex geometry and 
permits a geologist to enforce connectivity even if the confidence is low, which may be 
acceptable for Inferred Mineral Resource modelling. 

• IM provides capability to model structural offsets, which appears to require estimations into 
different fault blocks in the ML process based on some preliminary tests (Maptek – Machine 
learning for fault identification, 2021). 

• IM accommodates string data more simply, such as face mapping boundaries and permits 
local adjustments based on a geologist expert assessment of continuity. 

CONCLUSION 
Advancements in the application of ML algorithms to resource modelling, has returned focus to the 
fundamental importance of the accuracy of the foundational drill hole file. IM methods of modelling 
have provided a set of tools to help overcome errors in logging but have also resulted in them being 
continually retained within drill hole databases. Errors contained within the drill hole file inevitably 
propagate within current models and will also affect ML models. This highlights the criticality of 
developing robust logging processes and training junior staff in the importance of accurate logging. 
Moving from an interpretive 3D domain-based process to a drill hole file data process, capable of 
building multiple interpretations within the same model, represents a fundamental shift in the way 
geologists can model a mineral deposit. However, having the ability to build multiple conditioned 
interpretations within ML models requires robust and rapid methods of model reconciliation to assist 
in testing different ML scenarios. 
Nova’s MGT considers that the maturity of the ML software trialled at Nova is not yet currently at a 
stage that allows for complete substitution of current MRE processes. Notwithstanding this 
conclusion, as further developments in the ML modelling capability are made, the authors consider 
that it is likely that ML will become the preferred modelling method for mineral deposits. ML will 
become particularly attractive if the process can not only model geological domains, but also return 
reliable grade estimates for mine planning across for the full range of mineralisation styles, while 
also providing a well understood confidence measure that can assist in risk quantification of both 
geology and grade. 
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