Maptek Data System
Maptek Compute Framework
Maptek Orchestration Environment
Join our early access program to unlock value for your organisation.
Drill & blast management
Interconnected mine scheduling
Reliable proximity awareness underground
Dynamic survey surface updates
3D mine planning & geological modelling
Streamlined geological modelling workflow
Machine learning assisted domain modelling
Material tracking & reconciliation systems
3D laser scanning & imaging
Point cloud processing & analysis
LiDAR-based stability & convergence monitoring
Derive value from airborne or mobile sensor data
Over time, a population of individuals will become better suited for their environment. This is the process of natural selection.
A genetic algorithm is an optimisation technique that mimics natural selection to solve complex optimisation problems. The first step of using a genetic algorithm to solve any problem is finding a way to compress a solution to the problem into an ‘encoding’.
Using this definition, a population is a grouping of encodings. Once the problem can be represented in a population, various natural genetic processes can be simulated. This includes the combination of DNA as two parents breed (crossover), as well as the random changes that happen to a single encoding during the breeding process (mutation).
As in nature, genetic processes take time, trial and error… and genetic algorithms do not take shortcuts or make magic intuitive leaps—they just do it all faster. Access to the cloud has provided computing power that makes it seem easy!
Dead ends are quickly eliminated and the seemingly huge problem is relentlessly narrowed down into optimal solutions.
Now that the problem has been defined and modelled in code, your individual solutions fight it out in the cloud learning and competing with each other in a simultaneous processing environment.
Maptek Evolution is aptly named. It uses evolutionary algorithms to produce dynamic, agile mine schedules that allow operations to maximise value without dumbing-down the data. Thousands of scenarios can be rapidly assessed through high performance cloud computing to generate new, better solutions.
At Maptek, the Evolution product development team has been consolidating genetic algorithm code so we can quickly and easily apply it to new projects and share with other development teams. In this way we consolidate the optimisation building blocks to create a standalone genetic algorithm in the same manner as a linear programming library.
Look out for our next blog, which goes a bit deeper into how genetic algorithms work.
Click here to read part 2 of this blog series >
Luke Berry
Evolution Team Lead
November 27, 2020
For additional information about Maptek, including use of the Maptek logo, product images and reproduction of case studies, please direct inquiries to Global Marketing Communications Manager jane.ball@maptek.com.au
ReCAPTCHA has failed to load! Try reloading the page to submit this form. ReCAPTCHA no se ha podido cargar. Intente volver a cargar la página para enviar este formulario. Não foi possível carregar ReCAPTCHA. Tente recarregar a página para enviar este formulário. Не удалось загрузить ReCAPTCHA. Попробуйте перезагрузить страницу, чтобы отправить эту форму.
We use cookies to enhance your browsing experience and analyse our traffic. By clicking "Accept all", you consent to our use of cookies. You can customise your cookie preferences by clicking 'Customise Preferences'.
We use cookies to enhance your browsing experience and analyse our traffic.
Our website may store cookies on your computer in order to improve and customise your future visits to the website. By using cookies, we can track information about your usage of the site and improve your experience with anonymous and aggregated user data.
Review our Privacy PolicyEssential for the website's functionality, without which the site cannot operate smoothly.
Remember user preferences and choices to provide a more personalized experience.
Collect data on how users interact with the website, helping to improve user experience.
Used to deliver targeted advertisements to users based on their browsing behavior and preferences.